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Numerical analysis is used to determine the parameters of the crtitical equilibrium 
states of a weightless uniformly rotating melt in a model of single-crystal growth by the 
floating zone technique. The treatment focuses on nonzero angles of growth. 

Consider a liquid of density p, occupying the region bounded by the ends of two coaxial 
cylindrical rods of equal radius G0 and by a free surface F. No external force fields are 
acting; the system rotates with constant angular velocity ~ about the axis ~ of the rods, 
and is in equilibrium under the effect of centrifugal and surface-tension forces. We assume 
that F is axisymmetric and that the tangent to its axial cross section (profile) at the 
point of contact with the edge of either rod makes an angle 60 with the horizontal, i.e., the 
endface of the rod (see Fig. i). Our object is to analyze the stability of this state. 

The above problem models the stability of a rotating weightless melt in sigle-crystal 
growth by zone melting. We define the angle 60 = 7/2 - y (where y is the angle of growth 
[i]) at the endface which is the front of solidification. The angle y is close to zero; 
for actual semiconductor materials (e.g., silicon or germanium), it is 10-15 ~ . 

Let us introduce a cylindrical coordinate system (~, 8, ~), with its origin at the 
center of the endface and its ~ axis pointing towards the liquid. The arc length T along 
the profile is measured from the point at which ~ = 0. Using the linear scale p-i/3 (p = 
p~2/2o, where o is the coefficient of surface tension) we convert to the dimensionless 
quantities r = ~pl/3, r0 = $0p~/3, z = ~pi/3, s = ~pl/~. The shape of the profile is then 
given by the solution r(s), z(s) of the problem [2] 

r! r "  = - z ' ( *  + c - z ' / r ) ,  z "  = r ' ( ~  + c - z ~ ) ,  

r(O) = ro, r'(O) = cos ~o, z(O) = O, z'(O) - - - s i n  ~o. 
(i) 

According to [2, 3], for any given parameter c a critical point in the solution of (i) 
is the first point s = s* at which either d0(s) or ~(s) changes sign. Here 

do 69 = %~ (s) ~ r (%~ - -  %~) ds + [%~ (s) - -  %~ ( s ) l  r%~ ds, 
0 0 

and the functions %L(s), ~0=(s), %3(s) and %(s) are the solutions of the following problems: 

r 

L % ,  = O, % ,  (0) = O, , ~  (0) = l ,  L % ~  = O, %,,_ (0) = f ,  %2 (0) = O, 
' t 

L(po ~ = I, % ~ ( 0 ) =  1, % . ~ ( 0 ) =  O, L % - - % / r " = O ,  % ( 0 ) = 0 ,  % ( 0 ) =  1. 

L(p - -  cp" -Jr r'(p'/r -}- [2rz' ~- (r 2 + c - -  z ' /r)  ~ ~- (z'lr)21% 

Since r(s I) = r 0 at the endpoint s = s I of the profile, in order to find the critical 
profile for given r 0 and 60 it is necessary to choose c so that r(s*) = n o . A change in 
the sign of d0(s) or ~1(s) denotes a loss of stability with respect to axisyn~netric or non- 
axisymmetric perturbations, respectively . 
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TABLE 1 

~0=75 ~ 13o~80 ~ 

ro 

0,050 
0,i00 
0,150 
0,215 
0,300 
0,464 
0,600 
0,800 
t,000 
t ,200 
t ,400 
1,600 
t ,800 
2,t54 
2,300 
2,600 
2,900 
3,500 
4,642 
7,000 

C~ 

3,728 
3,015 
2,599 
2,258 
t ,925 
t ,402 
1,0t8 
0,481 

--0,069 
--0,644 
--1,264 
--t ,94i 
--2,683 
--4,t67 
--4,842 
--6,359 
--8,046 

--11,942 
--2i ,302 
--48,827 

24,983 
t5,747 
t2,02t 
9,3t0 
7,231 
4,897 
3,765 
2,69i 
i ,99i 
1,548 
1,247 
1,03i 
0,871 
0,672 
0,611 
0,5tl 
0,435 
0,329 
0,2t6 
0,tt8 

50,936 
i6,252 
8,570 
4,848 
3,027 
t ,865 
t ,537 
t ,3i9 
t ,228 
t,t74 
1,138 
i , t i3  
t ,095 
i,073 
t ,067 
1,056 
t ,048 
1,037 
t ,025 
1,015 

e~ 
g 

3,699 
3,0!8 
2,6i7 
2,277 
t,952 
t,471 
i,056 
0,494 

--0,063 
--0,642 
--t,267 
- - i  ,948 
--2,692 
--4,179 
--4,855 
--6,373 
--8,061 

--1i,958 
--21,322 
--48,847 

25,419 
i6,051 
12,308 
9,628 
7,570 
5,292 
4,009 
2,798 
2,062 
i ,607 
t ,295 
1,068 
0,90t 
0,692 
0,628 
0,524 
0,446 
0,337 
0,22i 
O,il9 

V:~ 

5i ,039 
15,833 
8,180 
4,580 
2,815 
1,636. 
t,392 
i ,229 
i g59 
t,118 
1,093 
1,076 
t ,064 
i ,050 
1,045 
i ,038 
t ,032 
i,025 
t ,0i7 
l,OiO 

The mathematical formulation and a preliminary analysis of the problem are provided in 
[3], where a zero angle of growth is specifically considered. In that case, the only stable 
surfaces are circular cylinders r(s) ~ r0. It is shown in [4] that the cylindrical surface 
is stable as long as 

~q < 2n / (  i - -  '~ 3;1/2 -~ZQ)) for t" o ~ 1 / 6 ,  

~1 < a/(2r~) '/2 for ,'o ~ ~ J/6 

(q = h/~0,~where h is the dimensional height of the zone). When these inequalities are 
violated stability is lost, with respect to axisymmetric perturbations in the first instance, 
and with respect to nonaxisymmetric ones in the second. 

Let us now examine nonzero angles of growth. The boundary of the stability region of 
nonrotating (r 0 = 0) weightless axisymmetric equilibrium states is plotted and analyzed in 
[5]. It is shown there that convex (barrel-shaped) states with 0 < 60 < ~/2 are stable, i.e., 
the line corresponding to these states with a given 60 never intersects the boundary of 
the stability region. When q + ~, the relative volume V ~ v/(~h) (where v is the dimen- 
sional volume of the liquid) also tends to infinity along such a line. The stability region 
plotted in the variables (q, V) is therefore unbounded. The deformation of the boundary of 
the stability region with rotation (r 0 > 0) is examined in [6]. Calculation of this boundary 
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for r 0 = 3 0~,i and r 0 = a 0~,5 shows that in this case the stability region is bounded and 
becomes smaller as r 0 increases. It is impossible, however, to determine from [6] the param- 
eters of the critical states of a zone with a given 60 # 7/2 or for a particular r 0 > 0. 

We solved this problem numerically by the foregoing method for 60 = 75 and 80 ~ and 
different values of r 0. (The Weber number We ~ pm2g~/2o often encountered in the literature 
is equal to r~.) We found that when r 0 ~ 0.05 the critical states are always barrel-shaped 
(and symmetric about the equatorial plane ~ = h/2), and that stability is lost with respect 
to nonaxisymmetric perturbations whose component normal to the equilibrium surface is 
proportional to ~1(s)cos 8. 

The parameters c = c,, n = D,, V = V, which correspond to critical states are listed in 
Table 1 for 60 = 75, 80 ~ and different r 0 values. When r 0 + 0, we have ~, + = and V, + ~, 
in good agreement with [5]. The stable states are barrel-shaped, and in that case c > c,, 
n < D,, V < V,. 
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